Iterative Rank based Methods for Clustering

نویسندگان

  • Sören W. Perrey
  • Heinrich Brinck
  • Achim Zielesny
چکیده

Recently a new clustering algorithm was developed, useful in phylogenetic systematics and taxonomy. It derives a hierarchy from (dis)similarity data on a simple and rather natural way. It transforms a given dissimilarity by an iterative approach. Each iteration step consists of ranking the objects under consideration according to their pairwise dissimilarity and calculating the Euclidian distance of the resulting rank vectors. We investigate alterations of this order of steps as well as substitute the Euclidian distance by standard statistical measures for series of estimates. We evaluate the resulting different procedures on biological and other data sets of different structure regarding their underlying cluster systems. Thereby, potentials and limits of this kind of iterative approach become obvious .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering

Multi-view spectral clustering, which aims at yielding an agreement or consensus data objects grouping across multi-views with their graph laplacian matrices, is a fundamental clustering problem. Among the existing methods, Low-Rank Representation (LRR) based method is quite superior in terms of its effectiveness, intuitiveness and robustness to noise corruptions. However, it aggressively tries...

متن کامل

Application of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data

Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...

متن کامل

Symmetric low-rank representation for subspace clustering

We propose a symmetric low-rank representation (SLRR) method for subspace clustering, which assumes that a data set is approximately drawn from the union of multiple subspaces. The proposed technique can reveal the membership of multiple subspaces through the self-expressiveness property of the data. In particular, the SLRR method considers a collaborative representation combined with low-rank ...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Exploiting Non-local Low Rank Structure in Image Reconstruction

Constrained image models based on linear dependence are commonly used in high dimensional imaging and computer vision to exploit or extract structure, which can be expressed with low rank matrix approximations. Natural images also have a self-similarity property, where features tend to repeat themselves all over the image, and linear dependence relationships may be non-local. To exploit non-loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003